Naslovna / FAQ

FAQ

saželi smo neke uobičajene probleme

Proizvodnja

  • Q.

    Radite li proizvode po mjeri?

    A.

    Da. Kupcima nudimo OEM/ODM rješenja. OEM minimalna količina narudžbe je 10,000 komada.

  • Q.

    Kako pakirate proizvode?

    A.

    Pakiramo prema propisima Ujedinjenih naroda, a također možemo osigurati posebna pakiranja prema zahtjevima kupaca.

  • Q.

    Kakvu potvrdu imate?

    A.

    Imamo ISO9001, CB, CE, UL, BIS, UN38.3, KC, PSE.

  • Q.

    Pružate li besplatne uzorke?

    A.

    Baterije snage ne veće od 10WH nudimo kao besplatne uzorke.

  • Q.

    Koji su vaši proizvodni kapaciteti?

    A.

    120,000-150,000 komada dnevno, svaki proizvod ima drugačiji proizvodni kapacitet, možete razgovarati o detaljnim informacijama prema e-mailu.

  • Q.

    Koliko je vremena potrebno za proizvodnju?

    A.

    Oko 35 dana. Konkretno vrijeme može se dogovoriti putem e-pošte.

  • Q.

    Koliko je vrijeme proizvodnje vašeg uzorka?

    A.

    Dva tjedna (14 dana).

drugo

  • Q.

    Koji su uvjeti plaćanja?

    A.

    Općenito prihvaćamo 30% akontacije kao depozit i 70% prije isporuke kao konačnu uplatu. Mogu se dogovoriti i druge metode.

  • Q.

    Koji su uvjeti isporuke?

    A.

    Nudimo: FOB i CIF.

  • Q.

    Koji je način plaćanja?

    A.

    Prihvaćamo plaćanje putem TT-a.

  • Q.

    Na kojim ste tržištima prodavali?

    A.

    Prevozili smo robu u Sjevernu Europu, Zapadnu Europu, Sjevernu Ameriku, Bliski istok, Aziju, Afriku i druga mjesta.

Tehnologija

  • Q.

    Što je baterija?

    A.

    Batteries are a kind of energy conversion and storage devices that convert chemical or physical energy into electrical energy through reactions. According to the different energy conversion of the battery, the battery can be divided into a chemical battery and a biological battery. A chemical battery or chemical power source is a device that converts chemical energy into electrical energy. It comprises two electrochemically active electrodes with different components, respectively, composed of positive and negative electrodes. A chemical substance that can provide media conduction is used as an electrolyte. When connected to an external carrier, it delivers electrical energy by converting its internal chemical energy. A physical battery is a device that converts physical energy into electrical energy.

  • Q.

    Koje su razlike između primarnih i sekundarnih baterija?

    A.

    Glavna razlika je u tome što je aktivni materijal drugačiji. Aktivni materijal sekundarne baterije je reverzibilan, dok aktivni materijal primarne baterije nije. Samopražnjenje primarne baterije je mnogo manje od sekundarne baterije. Ipak, unutarnji otpor je puno veći od otpora sekundarne baterije, pa je nosivost niža. Osim toga, kapacitet primarne baterije specifičan za masu i kapacitet primarne baterije značajniji su od onih dostupnih punjivih baterija.

  • Q.

    Koji je elektrokemijski princip Ni-MH baterija?

    A.

    Ni-MH batteries use Ni oxide as the positive electrode, hydrogen storage metal as the negative electrode, and lye (mainly KOH) as the electrolyte. When the nickel-hydrogen battery is charged: Positive electrode reaction: Ni(OH)2 + OH- → NiOOH + H2O–e- Adverse electrode reaction: M+H2O +e-→ MH+ OH- When the Ni-MH battery is discharged: Positive electrode reaction: NiOOH + H2O + e- → Ni(OH)2 + OH- Negative electrode reaction: MH+ OH- →M+H2O +e-

  • Q.

    Koji je elektrokemijski princip litij-ionskih baterija?

    A.

    The main component of the positive electrode of the lithium-ion battery is LiCoO2, and the negative electrode is mainly C. When charging, Positive electrode reaction: LiCoO2 → Li1-xCoO2 + xLi+ + xe- Negative reaction: C + xLi+ + xe- → CLix Total battery reaction: LiCoO2 + C → Li1-xCoO2 + CLix The reverse reaction of the above reaction occurs during discharge.

  • Q.

    Koji su uobičajeni standardi za baterije?

    A.

    Commonly used IEC standards for batteries: The standard for nickel-metal hydride batteries is IEC61951-2: 2003; the lithium-ion battery industry generally follows UL or national standards. Commonly used national standards for batteries: The standards for nickel-metal hydride batteries are GB/T15100_1994, GB/T18288_2000; the standards for lithium batteries are GB/T10077_1998, YD/T998_1999, and GB/T18287_2000. In addition, the commonly used standards for batteries also include the Japanese Industrial Standard JIS C on batteries. IEC, the International Electrical Commission (International Electrical Commission), is a worldwide standardization organization composed of electrical committees of various countries. Its purpose is to promote the standardization of the world's electrical and electronic fields. IEC standards are standards formulated by the International Electrotechnical Commission.

  • Q.

    Koja je glavna struktura Ni-MH baterije?

    A.

    Glavne komponente nikal-metal hidridnih baterija su pozitivna elektroda (nikl oksid), ploča negativne elektrode (legura za pohranu vodika), elektrolit (uglavnom KOH), membranski papir, brtveni prsten, poklopac pozitivne elektrode, kućište baterije itd.

  • Q.

    Koje su glavne strukturne komponente litij-ionskih baterija?

    A.

    Glavne komponente litij-ionskih baterija su gornji i donji poklopci baterije, ploča pozitivne elektrode (aktivni materijal je litij kobalt oksid), separator (posebna kompozitna membrana), negativna elektroda (aktivni materijal je ugljik), organski elektrolit, kućište baterije (podijeljeno na dvije vrste čelične ljuske i aluminijske školjke) i tako dalje.

  • Q.

    Koliki je unutarnji otpor baterije?

    A.

    Odnosi se na otpor koji doživljava struja koja teče kroz bateriju dok baterija radi. Sastoji se od omskog unutarnjeg otpora i polarizacijskog unutarnjeg otpora. Značajan unutarnji otpor baterije će smanjiti radni napon pražnjenja baterije i skratiti vrijeme pražnjenja. Na unutarnji otpor uglavnom utječu materijal baterije, proizvodni proces, struktura baterije i drugi čimbenici. To je važan parametar za mjerenje performansi baterije. Napomena: Općenito, unutarnji otpor u napunjenom stanju je standard. Za izračunavanje unutarnjeg otpora baterije, trebao bi koristiti poseban mjerač unutarnjeg otpora umjesto multimetra u rasponu ohma.

  • Q.

    Koliki je nazivni napon?

    A.

    Nazivni napon baterije odnosi se na napon prikazan tijekom redovnog rada. Nazivni napon sekundarne nikal-kadmij nikl-vodikove baterije je 1.2V; nazivni napon sekundarne litijeve baterije je 3.6V.

  • Q.

    Što je napon otvorenog kruga?

    A.

    Napon otvorenog kruga odnosi se na razliku potencijala između pozitivne i negativne elektrode baterije kada baterija ne radi, odnosno kada struja ne teče kroz strujni krug. Radni napon, također poznat kao napon terminala, odnosi se na razliku potencijala između pozitivnog i negativnog pola baterije kada baterija radi, odnosno kada postoji prekomjerna struja u krugu.

  • Q.

    Koliki je kapacitet baterije?

    A.

    Kapacitet baterije dijeli se na nazivnu snagu i stvarnu sposobnost. Nazivni kapacitet baterije odnosi se na odredbu ili jamstvo da baterija treba isprazniti minimalnu količinu električne energije pod određenim uvjetima pražnjenja tijekom projektiranja i proizvodnje oluje. IEC standard propisuje da se nikal-kadmij i nikal-metal hidridne baterije pune na 0.1C 16 sati i prazne na 0.2C do 1.0V pri temperaturi od 20°C±5°C. Nazivni kapacitet baterije izražen je kao C5. Predviđeno je da se litij-ionske baterije pune 3 sata pod prosječnom temperaturom, konstantna struja (1C)-konstantni napon (4.2V) kontrolira zahtjevne uvjete, a zatim se prazne na 0.2C do 2.75V kada je ispražnjena električna energija nazivnog kapaciteta. Stvarni kapacitet baterije odnosi se na stvarnu snagu koju oslobađa oluja pod određenim uvjetima pražnjenja, na koju uglavnom utječu brzina pražnjenja i temperatura (strogo govoreći, kapacitet baterije treba odrediti uvjete punjenja i pražnjenja). Jedinica kapaciteta baterije je Ah, mAh (1Ah=1000mAh).

  • Q.

    Koliki je preostali kapacitet pražnjenja baterije?

    A.

    Kada se punjiva baterija isprazni velikom strujom (kao što je 1C ili više), zbog "efekta uskog grla" koji postoji u internoj brzini difuzije strujne prekomjerne struje, baterija je dosegnula terminalni napon kada kapacitet nije potpuno ispražnjen , a zatim koristi malu struju kao što je 0.2C može nastaviti uklanjati, sve dok 1.0V/komadu (nikl-kadmijeva i nikal-vodikova baterija) i 3.0V/komadu (litijeva baterija), oslobođeni kapacitet naziva se preostali kapacitet.

  • Q.

    Što je platforma za pražnjenje?

    A.

    Platforma za pražnjenje Ni-MH punjivih baterija obično se odnosi na raspon napona u kojem je radni napon baterije relativno stabilan kada se isprazni pod određenim sustavom pražnjenja. Njegova je vrijednost povezana sa strujom pražnjenja. Što je struja veća, to je težina manja. Platforma za pražnjenje litij-ionskih baterija općenito treba prestati puniti kada je napon 4.2 V, a sadašnji je manji od 0.01 C pri konstantnom naponu, zatim ostavite 10 minuta i ispraznite se na 3.6 V pri bilo kojoj brzini pražnjenja. Trenutno. To je nužan standard za mjerenje kvalitete baterija.

  • Q.

    Koja je metoda označavanja punjivih baterija koju određuje IEC?

    A.

    Prema IEC standardu, oznaka Ni-MH baterije sastoji se od 5 dijelova. 01) Battery type: HF and HR indicate nickel-metal hydride batteries 02) Battery size information: including the diameter and height of the round battery, the height, width, and thickness of the square battery, and the values ​​are separated by a slash, unit: mm 03) Discharge characteristic symbol: L means that the suitable discharge current rate is within 0.5C M indicates that the suitable discharge current rate is within 0.5-3.5C H indicates that the suitable discharge current rate is within 3.5-7.0C X indicates that the battery can work at a high rate discharge current of 7C-15C. 04) High-temperature battery symbol: represented by T 05) Battery connection piece: CF represents no connection piece, HH represents the connection piece for battery pull-type series connection, and HB represents the connection piece for side-by-side series connection of battery belts. Na primjer, HF18/07/49 predstavlja četvrtastu nikl-metal hidridnu bateriju širine 18 mm, 7 mm i visine 49 mm. KRMT33/62HH predstavlja nikal-kadmij bateriju; brzina pražnjenja je između 0.5C-3.5, visokotemperaturna serija pojedinačna baterija (bez spojnog dijela), promjer 33 mm, visina 62 mm. According to the IEC61960 standard, the identification of the secondary lithium battery is as follows: 01) The battery logo composition: 3 letters, followed by five numbers (cylindrical) or 6 (square) numbers. 02) Prvo slovo: označava štetan materijal elektrode baterije. I—predstavlja litij-ionsku s ugrađenom baterijom; L—predstavlja litijevu metalnu elektrodu ili elektrodu od litijeve legure. 03) Drugo slovo: označava materijal katode baterije. C—elektroda na bazi kobalta; N—elektroda na bazi nikla; M—elektroda na bazi mangana; V—elektroda na bazi vanadija. 04) Treće slovo: označava oblik baterije. R-predstavlja cilindričnu bateriju; L-predstavlja kvadratnu bateriju. 05) Brojevi: Cilindrična baterija: 5 brojeva označava promjer i visinu oluje. Jedinica promjera je milimetar, a veličina desetinka milimetra. Kada je bilo koji promjer ili visina veći ili jednak 100 mm, treba dodati dijagonalnu liniju između dvije veličine. Četvrtasta baterija: 6 brojeva označava debljinu, širinu i visinu oluje u milimetrima. Kada je bilo koja od tri dimenzije veća ili jednaka 100 mm, treba dodati kosu crtu između dimenzija; ako je bilo koja od tri dimenzije manja od 1 mm, ispred te dimenzije dodaje se slovo "t", a jedinica te dimenzije je jedna desetina milimetra. Na primjer, ICR18650 predstavlja cilindričnu sekundarnu litij-ionsku bateriju; materijal katode je kobalt, promjer joj je oko 18 mm, a visina oko 65 mm. ICR20/1050. ICP083448 predstavlja kvadratnu sekundarnu litij-ionsku bateriju; materijal katode je kobalt, njegova debljina je oko 8 mm, širina je oko 34 mm, a visina oko 48 mm. ICP08/34/150 predstavlja kvadratnu sekundarnu litij-ionsku bateriju; materijal katode je kobalt, njegova debljina je oko 8 mm, širina je oko 34 mm, a visina oko 150 mm.

  • Q.

    Koji su materijali za pakiranje baterije?

    A.

    01) Non-dry meson (paper) such as fiber paper, double-sided tape 02) PVC film, trademark tube 03) Connecting sheet: stainless steel sheet, pure nickel sheet, nickel-plated steel sheet 04) Lead-out piece: stainless steel piece (easy to solder) Pure nickel sheet (spot-welded firmly) 05) Plugs 06) Protection components such as temperature control switches, overcurrent protectors, current limiting resistors 07) Carton, paper box 08) Plastic shell

  • Q.

    Koja je svrha pakiranja, sastavljanja i dizajna baterije?

    A.

    01) Beautiful, brand 02) The battery voltage is limited. To obtain a higher voltage, it must connect multiple batteries in series. 03) Protect the battery, prevent short circuits, and prolong battery life 04) Size limitation 05) Easy to transport 06) Design of special functions, such as waterproof, unique appearance design, etc.

  • Q.

    Koji su glavni aspekti izvedbe sekundarne baterije općenito?

    A.

    Uglavnom uključuje napon, unutarnji otpor, kapacitet, gustoću energije, unutarnji tlak, stopu samopražnjenja, vijek trajanja, performanse brtvljenja, sigurnosne performanse, performanse skladištenja, izgled itd. Tu su i prenapunjenost, prekomjerno pražnjenje i otpornost na koroziju.

  • Q.

    Koji su predmeti ispitivanja pouzdanosti baterije?

    A.

    01) Cycle life 02) Different rate discharge characteristics 03) Discharge characteristics at different temperatures 04) Charging characteristics 05) Self-discharge characteristics 06) Storage characteristics 07) Over-discharge characteristics 08) Internal resistance characteristics at different temperatures 09) Temperature cycle test 10) Drop test 11) Vibration test 12) Capacity test 13) Internal resistance test 14) GMS test 15) High and low-temperature impact test 16) Mechanical shock test 17) High temperature and high humidity test

  • Q.

    Što su predmeti ispitivanja sigurnosti baterije?

    A.

    01) Short circuit test 02) Overcharge and over-discharge test 03) Withstand voltage test 04) Impact test 05) Vibration test 06) Heating test 07) Fire test 09) Variable temperature cycle test 10) Trickle charge test 11) Free drop test 12) low air pressure test 13) Forced discharge test 15) Electric heating plate test 17) Thermal shock test 19) Acupuncture test 20) Squeeze test 21) Heavy object impact test

  • Q.

    Koji su standardni načini punjenja?

    A.

    Charging method of Ni-MH battery: 01) Constant current charging: the charging current is a specific value in the whole charging process; this method is the most common; 02) Constant voltage charging: During the charging process, both ends of the charging power supply maintain a constant value, and the current in the circuit gradually decreases as the battery voltage increases; 03) Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero. Lithium battery charging method: Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero.

  • Q.

    Koje je standardno punjenje i pražnjenje Ni-MH baterija?

    A.

    Međunarodni standard IEC propisuje da je standardno punjenje i pražnjenje nikl-metal hidridnih baterija: prvo ispraznite bateriju na 0.2C do 1.0V/komadu, zatim punite na 0.1C 16 sati, ostavite je 1 sat i stavite je na 0.2C do 1.0V/komadu, odnosno za punjenje i pražnjenje baterije standardno.

  • Q.

    Što je pulsno punjenje? Kakav je utjecaj na performanse baterije?

    A.

    Pulsno punjenje općenito koristi punjenje i pražnjenje, postavljanje na 5 sekundi, a zatim otpuštanje na 1 sekundu. On će smanjiti većinu kisika koji nastaje tijekom procesa punjenja u elektrolite pod impulsom pražnjenja. Ne samo da ograničava količinu unutarnjeg isparavanja elektrolita, već će se stare baterije koje su jako polarizirane postupno oporaviti ili približiti izvornom kapacitetu nakon 5-10 puta punjenja i pražnjenja ovom metodom punjenja.

  • Q.

    Što je kontinuirano punjenje?

    A.

    Punjenje se koristi za nadoknađivanje gubitka kapaciteta uzrokovanog samopražnjenjem baterije nakon što se potpuno napuni. Općenito, pulsno punjenje se koristi za postizanje gore navedene svrhe.

  • Q.

    Što je učinkovitost punjenja?

    A.

    Učinkovitost punjenja odnosi se na mjeru stupnja do kojeg se električna energija koju troši baterija tijekom procesa punjenja pretvara u kemijsku energiju koju baterija može pohraniti. Na to uglavnom utječu tehnologija baterije i temperatura radnog okruženja oluje - općenito, što je temperatura okoline viša, to je niža učinkovitost punjenja.

  • Q.

    Što je učinkovitost pražnjenja?

    A.

    Učinkovitost pražnjenja odnosi se na stvarnu snagu ispuštenu na terminalni napon pod određenim uvjetima pražnjenja do nazivnog kapaciteta. Na njega uglavnom utječu brzina pražnjenja, temperatura okoline, unutarnji otpor i drugi čimbenici. Općenito, što je veća brzina pražnjenja, to je veća brzina pražnjenja. Što je niža učinkovitost pražnjenja. Što je temperatura niža, to je niža učinkovitost pražnjenja.

  • Q.

    Kolika je izlazna snaga baterije?

    A.

    The output power of a battery refers to the ability to output energy per unit time. It is calculated based on the discharge current I and the discharge voltage, P=U*I, the unit is watts. The lower the internal resistance of the battery, the higher the output power. The internal resistance of the battery should be less than the internal resistance of the electrical appliance. Otherwise, the battery itself consumes more power than the electrical appliance, which is uneconomical and may damage the battery.

  • Q.

    Što je samopražnjenje sekundarne baterije? Kolika je stopa samopražnjenja različitih vrsta baterija?

    A.

    Self-discharge is also called charge retention capability, which refers to the retention capability of the battery's stored power under certain environmental conditions in an open circuit state. Generally speaking, self-discharge is mainly affected by manufacturing processes, materials, and storage conditions. Self-discharge is one of the main parameters to measure battery performance. Generally speaking, the lower the storage temperature of the battery, the lower the self-discharge rate, but it should also note that the temperature is too low or too high, which may damage the battery and become unusable. After the battery is fully charged and left open for some time, a certain degree of self-discharge is average. The IEC standard stipulates that after fully charged, Ni-MH batteries should be left open for 28 days at a temperature of 20℃±5℃ and humidity of (65±20)%, and the 0.2C discharge capacity will reach 60% of the initial total.

  • Q.

    Što je 24-satni test samopražnjenja?

    A.

    The self-discharge test of lithium battery is: Generally, 24-hour self-discharge is used to test its charge retention capacity quickly. The battery is discharged at 0.2C to 3.0V, constant current. Constant voltage is charged to 4.2V, cut-off current: 10mA, after 15 minutes of storage, discharge at 1C to 3.0 V test its discharge capacity C1, then set the battery with constant current and constant voltage 1C to 4.2V, cut-off current: 10mA, and measure 1C capacity C2 after being left for 24 hours. C2/C1*100% should be more significant than 99%.

  • Q.

    Koja je razlika između unutarnjeg otpora u nabijenom stanju i unutarnjeg otpora u ispražnjenom stanju?

    A.

    The internal resistance in the charged state refers to the internal resistance when the battery is 100% fully charged; the internal resistance in the discharged state refers to the internal resistance after the battery is fully discharged. Generally speaking, the internal resistance in the discharged state is not stable and is too large. The internal resistance in the charged state is more minor, and the resistance value is relatively stable. During the battery's use, only the charged state's internal resistance is of practical significance. In the later period of the battery's help, due to the exhaustion of the electrolyte and the reduction of the activity of internal chemical substances, the battery's internal resistance will increase to varying degrees.

  • Q.

    Što je statički otpor? Što je dinamički otpor?

    A.

    Statički unutarnji otpor je unutarnji otpor baterije tijekom pražnjenja, a dinamički unutarnji otpor je unutarnji otpor baterije tijekom punjenja.

  • Q.

    Je li standardni test otpornosti na prekomjerno punjenje?

    A.

    The IEC stipulates that the standard overcharge test for nickel-metal hydride batteries is: Discharge the battery at 0.2C to 1.0V/piece, and charge it continuously at 0.1C for 48 hours. The battery should have no deformation or leakage. After overcharge, the discharge time from 0.2C to 1.0V should be more than 5 hours.

  • Q.

    Što je IEC standardno ispitivanje životnog ciklusa?

    A.

    IEC stipulates that the standard cycle life test of nickel-metal hydride batteries is: After the battery is placed at 0.2C to 1.0V/pc 01) Charge at 0.1C for 16 hours, then discharge at 0.2C for 2 hours and 30 minutes (one cycle) 02) Charge at 0.25C for 3 hours and 10 minutes, and discharge at 0.25C for 2 hours and 20 minutes (2-48 cycles) 03) Charge at 0.25C for 3 hours and 10 minutes, and release to 1.0V at 0.25C (49th cycle) 04) Charge at 0.1C for 16 hours, put it aside for 1 hour, discharge at 0.2C to 1.0V (50th cycle). For nickel-metal hydride batteries, after repeating 400 cycles of 1-4, the 0.2C discharge time should be more significant than 3 hours; for nickel-cadmium batteries, repeating a total of 500 cycles of 1-4, the 0.2C discharge time should be more critical than 3 hours.

  • Q.

    Koliki je unutarnji tlak baterije?

    A.

    Refers to the internal air pressure of the battery, which is caused by the gas generated during the charging and discharging of the sealed battery and is mainly affected by battery materials, manufacturing processes, and battery structure. The main reason for this is that the gas generated by the decomposition of moisture and organic solution inside the battery accumulates. Generally, the internal pressure of the battery is maintained at an average level. In the case of overcharge or over-discharge, the internal pressure of the battery may increase: For example, overcharge, positive electrode: 4OH--4e → 2H2O + O2↑; ① The generated oxygen reacts with the hydrogen precipitated on the negative electrode to produce water 2H2 + O2 → 2H2O ② If the speed of reaction ② is lower than that of reaction ①, the oxygen generated will not be consumed in time, which will cause the internal pressure of the battery to rise.

  • Q.

    Što je standardni test zadržavanja naboja?

    A.

    IEC stipulates that the standard charge retention test for nickel-metal hydride batteries is: After putting the battery at 0.2C to 1.0V, charge it at 0.1C for 16 hours, store it at 20℃±5℃ and humidity of 65%±20%, keep it for 28 days, then discharge it to 1.0V at 0.2C, and Ni-MH batteries should be more than 3 hours. The national standard stipulates that the standard charge retention test for lithium batteries is: (IEC has no relevant standards) the battery is placed at 0.2C to 3.0/piece, and then charged to 4.2V at a constant current and voltage of 1C, with a cut-off wind of 10mA and a temperature of 20 After storing for 28 days at ℃±5℃, discharge it to 2.75V at 0.2C and calculate the discharge capacity. Compared with the battery's nominal capacity, it should be no less than 85% of the initial total.

  • Q.

    Što je test kratkog spoja?

    A.

    Upotrijebite žicu s unutarnjim otporom ≤100mΩ za spajanje pozitivnog i negativnog pola potpuno napunjene baterije u kutiji otpornoj na eksploziju kako biste kratko spojili pozitivni i negativni pol. Baterija ne smije eksplodirati ili se zapaliti.

  • Q.

    Što su testovi visoke temperature i visoke vlažnosti?

    A.

    The high temperature and humidity test of Ni-MH battery are: After the battery is fully charged, store it under constant temperature and humidity conditions for several days, and observe no leakage during storage. The high temperature and high humidity test of lithium battery is: (national standard) Charge the battery with 1C constant current and constant voltage to 4.2V, cut-off current of 10mA, and then put it in a continuous temperature and humidity box at (40±2)℃ and relative humidity of 90%-95% for 48h, then take out the battery in (20 Leave it at ±5)℃ for two h. Observe that the appearance of the battery should be standard. Then discharge to 2.75V at a constant current of 1C, and then perform 1C charging and 1C discharge cycles at (20±5)℃ until the discharge capacity Not less than 85% of the initial total, but the number of cycles is not more than three times.

  • Q.

    Što je eksperiment porasta temperature?

    A.

    Nakon što je baterija potpuno napunjena, stavite je u pećnicu i zagrijavajte sa sobne temperature brzinom od 5°C/min. Nakon što je baterija potpuno napunjena, stavite je u pećnicu i zagrijavajte sa sobne temperature brzinom od 5°C/min. Kad se pećnica zagrije na 130°C, držite 30 minuta. Baterija ne smije eksplodirati ili se zapaliti. Kad se pećnica zagrije na 130°C, držite 30 minuta. Baterija ne smije eksplodirati ili se zapaliti.

  • Q.

    Što je temperaturni ciklički eksperiment?

    A.

    The temperature cycle experiment contains 27 cycles, and each process consists of the following steps: 01) The battery is changed from average temperature to 66±3℃, placed for 1 hour under the condition of 15±5%, 02) Switch to a temperature of 33±3°C and humidity of 90±5°C for 1 hour, 03) The condition is changed to -40±3℃ and placed for 1 hour 04) Put the battery at 25℃ for 0.5 hours These four steps complete a cycle. After 27 cycles of experiments, the battery should have no leakage, alkali climbing, rust, or other abnormal conditions.

  • Q.

    Što je test pada?

    A.

    Nakon što se baterija ili baterija potpuno napune, tri puta se spuštaju s visine od 1 m na betonsko (ili cementno) tlo kako bi se dobili udari u nasumičnim smjerovima.

  • Q.

    Što je vibracijski eksperiment?

    A.

    The vibration test method of Ni-MH battery is: After discharging the battery to 1.0V at 0.2C, charge it at 0.1C for 16 hours, and then vibrate under the following conditions after being left for 24 hours: Amplitude: 0.8mm Make the battery vibrate between 10HZ-55HZ, increasing or decreasing at a vibration rate of 1HZ every minute. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ. (Vibration time is 90min) The lithium battery vibration test method is: After the battery is discharged to 3.0V at 0.2C, it is charged to 4.2V with constant current and constant voltage at 1C, and the cut-off current is 10mA. After being left for 24 hours, it will vibrate under the following conditions: The vibration experiment is carried out with the vibration frequency from 10 Hz to 60 Hz to 10 Hz in 5 minutes, and the amplitude is 0.06 inches. The battery vibrates in three-axis directions, and each axis shakes for half an hour. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ.

  • Q.

    Što je ispitivanje udarom?

    A.

    Nakon što je baterija potpuno napunjena, postavite tvrdu šipku vodoravno i bacite predmet od 20 funti s određene visine na tvrdu šipku. Baterija ne smije eksplodirati ili se zapaliti.

  • Q.

    Što je eksperiment penetracije?

    A.

    Nakon što se baterija potpuno napuni, provucite čavao određenog promjera kroz središte oluje i ostavite iglu u bateriji. Baterija ne smije eksplodirati ili se zapaliti.

  • Q.

    Što je eksperiment s vatrom?

    A.

    Postavite potpuno napunjenu bateriju na uređaj za grijanje s jedinstvenim zaštitnim poklopcem za vatru i nijedan otpad neće proći kroz zaštitni poklopac.

  • Q.

    Koje certifikate su prošli proizvodi tvrtke?

    A.

    Prošao je certifikaciju sustava kvalitete ISO9001:2000 i certifikaciju sustava zaštite okoliša ISO14001:2004; proizvod je dobio CE certifikat EU i UL certifikat Sjeverne Amerike, prošao SGS test zaštite okoliša i dobio je patentnu licencu tvrtke Ovonic; u isto vrijeme, PICC je odobrio proizvode tvrtke u svijetu Scope underwriting.

  • Q.

    Što je baterija spremna za korištenje?

    A.

    Baterija Ready-to-use nova je vrsta Ni-MH baterije s visokom stopom zadržavanja punjenja koju je lansirala tvrtka. To je baterija otporna na skladištenje s dvostrukom izvedbom primarne i sekundarne baterije i može zamijeniti primarnu bateriju. Odnosno, baterija se može reciklirati i ima veću preostalu snagu nakon skladištenja za isto vrijeme kao i obične sekundarne Ni-MH baterije.

  • Q.

    ​​Why is Ready-To-Use (HFR) the ideal product to replace disposable batteries?

    A.

    Compared with similar products, this product has the following remarkable features: 01) Smaller self-discharge; 02) Longer storage time; 03) Over-discharge resistance; 04) Long cycle life; 05) Especially when the battery voltage is lower than 1.0V, it has a good capacity recovery function; More importantly, this type of battery has a charge retention rate of up to 75% when stored in an environment of 25°C for one year, so this battery is the ideal product to replace disposable batteries.

  • Q.

    Koje su mjere opreza pri korištenju baterije?

    A.

    01) Please read the battery manual carefully before use; 02) The electrical and battery contacts should be clean, wiped clean with a damp cloth if necessary, and installed according to the polarity mark after drying; 03) Do not mix old and new batteries, and different types of batteries of the same model can not be combined so as not to reduce the efficiency of use; 04) The disposable battery cannot be regenerated by heating or charging; 05) Do not short-circuit the battery; 06) Do not disassemble and heat the battery or throw the battery into the water; 07) When electrical appliances are not in use for a long time, it should remove the battery, and it should turn the switch off after use; 08) Do not discard waste batteries randomly, and separate them from other garbage as much as possible to avoid polluting the environment; 09) When there is no adult supervision, do not allow children to replace the battery. Small batteries should be placed out of the reach of children; 10) it should store the battery in a cool, dry place without direct sunlight.

  • Q.

    Koja je razlika između raznih standardnih punjivih baterija?

    A.

    At present, nickel-cadmium, nickel-metal hydride, and lithium-ion rechargeable batteries are widely used in various portable electrical equipment (such as notebook computers, cameras, and mobile phones). Each rechargeable battery has its unique chemical properties. The main difference between nickel-cadmium and nickel-metal hydride batteries is that the energy density of nickel-metal hydride batteries is relatively high. Compared with batteries of the same type, the capacity of Ni-MH batteries is twice that of Ni-Cd batteries. This means that the use of nickel-metal hydride batteries can significantly extend the working time of the equipment when no additional weight is added to the electrical equipment. Another advantage of nickel-metal hydride batteries is that they significantly reduce the "memory effect" problem in cadmium batteries to use nickel-metal hydride batteries more conveniently. Ni-MH batteries are more environmentally friendly than Ni-Cd batteries because there are no toxic heavy metal elements inside. Li-ion has also quickly become a common power source for portable devices. Li-ion can provide the same energy as Ni-MH batteries but can reduce weight by about 35%, suitable for electrical equipment such as cameras and laptops. It is crucial. Li-ion has no "memory effect," The advantages of no toxic substances are also essential factors that make it a common power source. It will significantly reduce the discharge efficiency of Ni-MH batteries at low temperatures. Generally, the charging efficiency will increase with the increase of temperature. However, when the temperature rises above 45°C, the performance of rechargeable battery materials at high temperatures will degrade, and it will significantly shorten the battery's cycle life.

  • Q.

    Kolika je brzina pražnjenja baterije? Koja je satnica oslobađanja oluje?

    A.

    Brzina pražnjenja odnosi se na odnos brzine između struje pražnjenja (A) i nazivnog kapaciteta (A•h) tijekom izgaranja. Pražnjenje po satu odnosi se na sate potrebne za pražnjenje nazivnog kapaciteta pri određenoj izlaznoj struji.

  • Q.

    Zašto je potrebno držati bateriju toplom prilikom snimanja zimi?

    A.

    Since the battery in a digital camera has a low temperature, the active material activity is significantly reduced, which may not provide the camera's standard operating current, so outdoor shooting in areas with low temperature, especially. Pay attention to the warmth of the camera or battery.

  • Q.

    Koji je raspon radne temperature litij-ionskih baterija?

    A.

    Punjenje -10—45 ℃ Pražnjenje -30—55 ℃

  • Q.

    Mogu li se kombinirati baterije različitih kapaciteta?

    A.

    Ako pomiješate nove i stare baterije različitog kapaciteta ili ih koristite zajedno, može doći do curenja, nulte napona itd. To je zbog razlike u snazi ​​tijekom procesa punjenja, što uzrokuje da se neke baterije prepune tijekom punjenja. Neke baterije nisu potpuno napunjene i imaju kapacitet tijekom pražnjenja. Baterija visokog kapaciteta nije potpuno ispražnjena, a baterija niskog kapaciteta previše je prazna. U takvom začaranom krugu baterija je oštećena, te curi ili ima nizak (nulti) napon.

  • Q.

    Što je vanjski kratki spoj i kakav utjecaj ima na performanse baterije?

    A.

    Spajanje vanjska dva kraja baterije na bilo koji vodič prouzročit će vanjski kratki spoj. Kratak tečaj može dovesti do ozbiljnih posljedica za različite tipove baterija, kao što su porast temperature elektrolita, povećanje unutarnjeg tlaka zraka itd. Ako tlak zraka prijeđe otporni napon poklopca baterije, baterija će procuriti. Ova situacija ozbiljno oštećuje bateriju. Ako sigurnosni ventil pokvari, može čak uzrokovati eksploziju. Stoga nemojte kratko spojiti bateriju izvana.

  • Q.

    Koji su glavni čimbenici koji utječu na trajanje baterije?

    A.

    01) Charging: When choosing a charger, it is best to use a charger with correct charging termination devices (such as anti-overcharge time devices, negative voltage difference (-V) cut-off charging, and anti-overheating induction devices) to avoid shortening the battery life due to overcharging. Generally speaking, slow charging can prolong the service life of the battery better than fast charging. 02) Discharge: a. The depth of discharge is the main factor affecting battery life. The higher the depth of release, the shorter the battery life. In other words, as long as the depth of discharge is reduced, it can significantly extend the battery's service life. Therefore, we should avoid over-discharging the battery to a very low voltage. b. When the battery is discharged at a high temperature, it will shorten its service life. c. If the designed electronic equipment cannot completely stop all current, if the equipment is left unused for a long time without taking out the battery, the residual current will sometimes cause the battery to be excessively consumed, causing the storm to over-discharge. d. When using batteries with different capacities, chemical structures, or different charge levels, as well as batteries of various old and new types, the batteries will discharge too much and even cause reverse polarity charging. 03) Storage: If the battery is stored at a high temperature for a long time, it will attenuate its electrode activity and shorten its service life.

  • Q.

    Može li se baterija pohraniti u aparat nakon što se potroši ili ako se ne koristi dulje vrijeme?

    A.

    Ako neće koristiti električni uređaj dulje vrijeme, najbolje je izvaditi bateriju i staviti je na niskotemperaturno, suho mjesto. Ako nije, čak i ako je električni uređaj isključen, sustav će i dalje učiniti da baterija ima nisku izlaznu struju, što će skratiti vijek trajanja oluje.

  • Q.

    Koji su bolji uvjeti za skladištenje baterije? Trebam li u potpunosti napuniti bateriju za dugotrajnu pohranu?

    A.

    According to the IEC standard, it should store the battery at a temperature of 20℃±5℃ and humidity of (65±20)%. Generally speaking, the higher the storage temperature of the storm, the lower the remaining rate of capacity, and vice versa, the best place to store the battery when the refrigerator temperature is 0℃-10℃, especially for primary batteries. Even if the secondary battery loses its capacity after storage, it can be recovered as long as it is recharged and discharged several times. In theory, there is always energy loss when the battery is stored. The inherent electrochemical structure of the battery determines that the battery capacity is inevitably lost, mainly due to self-discharge. Usually, the self-discharge size is related to the solubility of the positive electrode material in the electrolyte and its instability (accessible to self-decompose) after being heated. The self-discharge of rechargeable batteries is much higher than that of primary batteries. If you want to store the battery for a long time, it is best to put it in a dry and low-temperature environment and keep the remaining battery power at about 40%. Of course, it is best to take out the battery once a month to ensure the excellent storage condition of the storm, but not to completely drain the battery and damage the battery.

  • Q.

    Što je standardna baterija?

    A.

    A battery that is internationally prescribed as a standard for measuring potential (potential). It was invented by American electrical engineer E. Weston in 1892, so it is also called Weston battery. The positive electrode of the standard battery is the mercury sulfate electrode, the negative electrode is cadmium amalgam metal (containing 10% or 12.5% ​​cadmium), and the electrolyte is acidic, saturated cadmium sulfate aqueous solution, which is saturated cadmium sulfate and mercurous sulfate aqueous solution.

  • Q.

    Koji su mogući razlozi za nulti napon ili nizak napon jedne baterije?

    A.

    01) External short circuit or overcharge or reverse charge of the battery (forced over-discharge); 02) The battery is continuously overcharged by high-rate and high-current, which causes the battery core to expand, and the positive and negative electrodes are directly contacted and short-circuited; 03) The battery is short-circuited or slightly short-circuited. For example, improper placement of the positive and negative poles causes the pole piece to contact the short circuit, positive electrode contact, etc.

  • Q.

    Koji su mogući razlozi za nulti napon ili nizak napon baterije?

    A.

    01) Whether a single battery has zero voltage; 02) The plug is short-circuited or disconnected, and the connection to the plug is not good; 03) Desoldering and virtual welding of lead wire and battery; 04) The internal connection of the battery is incorrect, and the connection sheet and the battery are leaked, soldered, and unsoldered, etc.; 05) The electronic components inside the battery are incorrectly connected and damaged.

  • Q.

    Koje su metode kontrole za sprječavanje prekomjernog punjenja baterije?

    A.

    To prevent the battery from being overcharged, it is necessary to control the charging endpoint. When the battery is complete, there will be some unique information that it can use to judge whether the charging has reached the endpoint. Generally, there are the following six methods to prevent the battery from being overcharged: 01) Peak voltage control: Determine the end of charging by detecting the peak voltage of the battery; 02) dT/DT control: Determine the end of charging by detecting the peak temperature change rate of the battery; 03) △T control: When the battery is fully charged, the difference between the temperature and the ambient temperature will reach the maximum; 04) -△V control: When the battery is fully charged and reaches a peak voltage, the voltage will drop by a particular value; 05) Timing control: control the endpoint of charging by setting a specific charging time, generally set the time required to charge 130% of the nominal capacity to handle;

  • Q.

    Koji su mogući razlozi zašto se baterija ili baterija ne mogu puniti?

    A.

    01) Zero-voltage battery or zero-voltage battery in the battery pack; 02) The battery pack is disconnected, the internal electronic components and the protection circuit is abnormal; 03) The charging equipment is faulty, and there is no output current; 04) External factors cause the charging efficiency to be too low (such as extremely low or extremely high temperature).

Niste pronašli ono što ste htjeli?Kontaktirajte Nas

zatvori_bijelo
blizu

Napišite upit ovdje

odgovorite u roku od 6 sati, sva pitanja su dobrodošla!